Элементы квантовой механики Кинематика примеры задач Расчёт цепей переменного тока Трехфазная цепь переменного тока Магнитные цепи Расчёт параметров трёхфазного трансформатора

Диффузионная камера (1936) — это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

Электроны в кристаллах

Электропроводность металлов

Квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Согласно корпускулярно-волновому дуализму, движению электрона сопоставляют волновой процесс. Идеальная кристаллическая решетка металла (в ее узлах находятся неподвижные частицы и в ней отсутствуют нарушения периодичности) ведет себя подобно оптически однородной среде - она «электронные волны» не рассеивает. Это соответствует тому, что металл не оказывает электрическому току — упорядоченному движению электронов — никакого сопротивления. «Электронные волны», распространяясь в идеальной кристаллической решетке металла, как бы огибают узлы решетки и проходят значительные расстояния.

В реальной кристаллической решетке металла всегда имеются неоднородности, которыми могут быть, например, примеси, вакансии; неоднородности обусловливаются также тепловыми колебаниями. В реальной кристаллической решетке происходит рассеяние «электронных волн» на неоднородностях, что и является причиной электрического сопротивления металлов. Рассеяние «электронных волн» на неоднородностях, связанных с тепловыми колебаниями, можно рассматривать как столкновения электронов с фононами. Упругие волны Волновые процессы. Продольные и поперечные волны Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колебаний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т. е. непрерывно распределенная в пространстве и обладающая упругими свойствами. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

Удельное электрическое сопротивление (ρ) металлов можно представить в виде

ρ = ρколеб + ρприм,

где ρколеб — сопротивление, обусловленное тепловыми колебаниями решетки, ρприм — сопротивление, обусловленное рассеянием электронов на примесных атомах. Слагаемое ρколеб уменьшается с понижением температуры и обращается в нуль при Т = 0 К. Слагаемое ρприм при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла, т. е. сопротивление, которым металл обладает вблизи 0 К.

Расчет электропроводности металлов, выполненный на основе квантовой теории, приводит к выражению для удельной электрической проводимости металла

(15.1)

которое по внешнему виду напоминает классическую формулу для σ, но имеет совершенно другое физическое содержание. Здесь п — концентрация электронов проводимости в металле; <ℓF> — средняя длина свободного пробега электрона, имеющего энергию Ферми, <uF> - средняя скорость теплового движения такого электрона, m* - эффективная масса электронов. Выводы, получаемые на основе формулы (15.1), полностью соответствуют опытным данным. Квантовая теория металлов, в частности, объясняет зависимость удельной проводимости от температуры: σ ~ 1/Т (классическая теория дает, что σ ~ 1/√Т), а также аномально большие величины (порядка сотен периодов решетки) средней длины свободного пробега электронов <ℓF> в металле.

Согласно классической теории, средняя скорость теплового движения электронов <u> ~ √T, поэтому она не смогла объяснить истинную зависимость удельной электрической проводимости σ от температуры. В квантовой теории средняя скорость <uF> от температуры практически не зависит, так как доказывается, что с изменением температуры уровень Ферми остается практически неизменным (см. (14.53)). Однако с повышением температуры рассеяние «электронных волн» на тепловых колебаниях решетки (на фононах) возрастает, что соответствует уменьшению средней длины свободного пробега электронов. В области комнатных температур <ℓF> ~ T -1, поэтому, учитывая независимость <uF> от температуры, получим, что сопротивление металлов (R ~ 1/σ) в соответствии с данными опытов растет пропорционально T.

Различие классической трактовки движения электронов проводимости в металле и квантовомеханической трактовки заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем. При квантовомеханической трактовке приходится принимать во внимание, что, хотя электрическим полем также возмущаются все электроны, однако их коллективное движение воспринимается в опыте как возмущение полем лишь электронов, занимающих состояния вблизи уровня Ферми. Кроме того, при классической трактовке в знаменателе формулы (15.1) должна стоять обычная масса электрона т. При квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m*. Это обстоятельство является проявлением общего правила, согласно которому соотношения, полученные в приближении свободных электронов, оказываются справедливыми и для электронов, движущихся в периодическом поле решетки, если в них заменить истинную массу m электрона эффективной массой m*.

Экспериментальное подтверждение гипотезы де Бройля. Опыты Дэвисона и Джермера. 1927-1923.

Ускоренные электроны пройдя диафрагму (чтобы пучок был узкий) направляются на монокристалл Ni, происходит отражение (угол отражения = углу падения). Далее попадают в цилиндр Фарадея и на землю.

Оказывается что макс ток будет при условии Вульфа-Бреггов:

2dSinφ=mλ m=1,2,3...

максимум порядка > 1 можно наблюдать :

1)поворачивая кристалл (меняя угол фи)

2)меняя Uускор (ускоренная ? Разность потенциалов – меняет импульс)

T = eUуск

λ = h/sqr(2meU)

схема опыта Тартаковского 1928

(катод, сетка, диафрагма, фольга-поликристалл цилиндр фарадея)

2dSinφ=mλ

на экране наблюдаются дифрагционные кольца. Максимум соответствует условию Вульфа-Бреггов.

Тогда возникает вопрос. Может быть такую картину дают не электроны а рентгеновские лучи? Создали магнитное поле, которое бы нейтрализовала рентген. - диффрагция не исчезла.

Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возможности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последующему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.
Трехфазная схема выпрямления с нулевой точкой