Физические основы термодинамики Атомная физика Закон радиоактивного распада Идеальный 3х атомный газ Уравнение динамики поступательного движения тела

Лекции и задачи по физике

Элементы зонной теории кристаллов

 В прошлом семестре рассматривались энергетические уровни электрона в атоме водорода [см. конспект лекций, ч. III, формула (11. 14)]. Там было показано, что значения энергии, которые может иметь электрон в атоме водорода , где n=1, 2, 3 ... главное квантовое число, т.е. энергия электрона в атоме квантована, она может принимать только дискретные значения. В общем случае энергетические уровни какого-либо валентного электрона в одном изолированном атоме могут быть представлены в виде , изображенном на рис. 1.

По вертикали отложены значения энергии, по горизонтали ничего не отложено. Наинизший уровень или уровень с наименьшей энергией Е1 называется основным или невозбужденным.

Рассмотрим теперь N тождественных атомов, удалённых друг от друга настолько далеко, что их взаимодействиями можно пренебречь. Все они в этом случае будут иметь одинаковые энергетические уровни (см. рис.1). Будем сближать атомы друг с другом, чтобы они образовали кристаллическую решётку. Тогда из-за взаимодействия между атомами каждый энергетический уровень изолированного атома Е1, Е2,... расщепится на N простых уровней (см. рис. 2).

Эта совокупность энергетических уровней, на которые расщепляется уровень изолированного атома, называется энергетической зоной или просто зоной кристалла. Ввиду того что N очень велико, расстояния между уровнями одной и той же зоны крайне малы и можно считать, что в пределах зоны dЕ энергия изменяется непрерывно. Однако соседние энергетические зоны, вообще говоря, разделены конечными интервалами энергии DE. Эти интервалы называются запрещенными зона (см. рис. 3a), т.к. энергия электрона не может принимать значения энергии, лежащие в пределах таких интервалов. В противоположность запрещенным зонам зоны с дозволенными значениями энергии называют разрешенными. Самыми широкими разрешенными зонами оказываются зоны, соответствующие уровням валентных электронов. Заметим, что энергетические зоны, разумеется нельзя путать с пространственными зонами, т.е. областями пространства, в которых может находиться электрон. Высшая, целиком заполненная зона, называется валентной, следующая разрешенная - зоной проводимости. 

Деление кристаллов на диэлектрики, металлы и полупроводники

  Все кристаллы разделяются на диэлектрики, металлы и полупроводники. Рассмотрим их энергетические зоны.

Чтобы исключить тепловое движение будем сначала предполагать, что температура кристалла равна 0 К. По принципу Паули на каждом уровне может находиться не более двух электронов с противоположно направленными спинами. В равновесном состоянии будут заполнены электронами самые низкие энергетические  уровни. А все вышележащие уровни окажутся свободными.

 В диэлектриках валентная зона целиком заполнена. А лежащая выше зона проводимости, отделенная от нее запрещенной зоной (ширина которой DЕ=2.5 - 3 эВ), совсем не содержит электронов, т.е. полностью свободна (см. рис. 3а). Электрический ток есть движение электронов, при котором они непрерывно переходят из одного состояния в другое. Следовательно, электроны пока они находятся в целиком заполненной валентной зоне, не могут участвовать в создании тока. Потому диэлектрики не проводят электрический ток.

В металлах валентная зона заполнена электронами частично (см. рис. 3б). Не имеет значения, существует ли запрещенная зона между валентной зоной и зоной проводимости. Они могут вплотную примыкать и даже перекрываться между собой.

  Существенно только, чтобы в зоне, содержащей электроны, были состояния, не занятые электронами. При наложении электрического поля с напряжённостью   у электронов имеется возможность переходить в такие незанятые состояния и через кристалл потечёт электрический ток в направлении .

 В полупроводниках (бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, йод и др. К наиболее часто используемым относятся Ge и Si - элементы 4-й группы периодической системы элементов), как и в диэлектриках валентная зона полностью заполнена электронами, а зона проводимости полностью свободна. Однако в полупроводниках ширина запрещённой зоны DЕ значительно меньше, чем в диэлектриках (рис. 3в). Например, DЕ = 1,1 эВ для Si и 0,65 эВ для Ge. Поэтому при Т>0 K электрон в валентной зоне может получить от иона кристаллической решётки энергию порядка kT и перейти в зону проводимости. Такой переход может быть осуществлён и другим способом, например, освещением кристалла. В результате этого кристалл приобретает способность проводить электрический ток.

 В полупроводниках проводимость создаётся электронами, перешедшими в зону проводимости. Электрон, ушедший из валентной зоны, оставляет в ней незаполненное состояние, называемое дыркой. Другой электрон в валентной зоне получает возможность перейти в это незаполненное состояние. При этом в валентной зоне создаётся новая дырка, в которую может перейти третий электрон и т. д. Вместе с движением электрона происходит движение и соответствующей дырки, но в обратном направлении. Явление происходит так, как если бы ток вызывался не движением отрицательно заряженных электронов, а противоположно направленным движением положительно заряженных дырок. Эти электроны и дырки являются носителями тока в полупроводнике. Подчеркнём, что движение дырки не есть перемещение какой-то реальной положительно заряженной частицы. Представление о дырках отображает характер движения всей многоэлектронной системы в полупроводнике.

Собственная проводимость полупроводников

 Электропроводность химически чистого полупроводника (например, чистого Ge или чистого Si) называется его собственной проводимостью. Расчет показывает, что у собственного полупроводника m=EF=DЕ/2 (см. рис. 3в). Распределение электронов по уровням валентной зоны и зоны проводимости описывается функцией Ферми-Дирака [cм. формулу (7.1)].

Т.к. средние числа заполнения электронами уровней зоны

проводимости малы, то можно пренебречь единицей в (7.1).

Учитывая все это, получаем <ni>»exp[-DE/(2kT)].

Поскольку проводимость пропорциональна числу носителей

тока, то удельная электропроводность

 g=g0 exp[-DE/(2kT)], (5)

где g0 - можно считать постоянной. Увеличение проводимости полупроводника с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается).

 Логарифмируя (5), находим, что lng=lng0-DE/(2kT). На рис. 4 приведена зависимость lng от 1/T. По углу наклона a этой прямой можно определить ширину запрещенной зоны .

Примесные полупроводники

Донорная примесь, полупроводники n-типа

 Введение в полупроводник примесей сильно влияет на его электрические свойства. Рассмотрим, например, что произойдет, если в решетке германия (Ge - четырехвалентен) один его атом замещен атомом примеси, обладающей пятью валентными электронами (фосфор, мышьяк, сурьма). Четыре электрона примесного атома будут находиться в химической связи с соседними атомами германия, а пятый, “лишний” электрон оказывается слабо связан с ядром атома, и его сравнительно легко перевести в зону проводимости. Энергия “лишних” примесных электронов несколько меньше минимальной энергии зоны проводимости (см. рис. 5а). Эти уровни заполнены некоторым числом электронов и называются донорными, а примесь (соответственно) называется донорной. Она создает в полупроводнике электронную проводимость или проводимость n-типа (от слова negative - отрицательный). Такой полупроводник - полупроводник n-типа.

 


9.6.2 Акцепторная примесь, полупроводники р-типа

 Предположим что в решетку германия введен примесный атом с тремя валентными электронами, например бор или индий. Трех валентных электронов атома примеси недостаточно для образования связи с четырьмя соседними атомами Ge, поэтому заимствуется один электрон у ближайшего атома Ge. Тогда на месте электрона, ушедшего из атома германия, образуется “положительная дырка”. Атомы примеси, вызывающие возникновение дырок, называются акцепторными, а сама примесь - акцепторной. Акцепторные уровни находятся вблизи максимальной энергии валентной зоны (см. рис. 5б). Акцепторная примесь создаст в полупроводнике дырочную проводимость или проводимость р-типа (от слова positive - положительный). Полупроводник с такой проводимостью называется полупроводником р-типа.

 Для примесных полупроводников ширина запрещённой зоны DЕпр в десятки раз меньше ширины запрещённой зоны собственных (т. е. беспримесных, химически чистых) полупроводников, т.е. DЕпр<<DЕ.

p-n-переход 

 Во многих областях современной электроники большую роль играет контакт двух полупроводников с n- и p- типами проводимости. Такой контакт называется p-n-переходом. Он обладает односторонней проводимостью. Существует теория контактных явлений. Из-за недостатка времени ограничимся качественными объяснениями.

 


При контакте разных полупроводников происходит диффузия носителей тока - электронов или дырок - из области, где их больше, в область, где их меньше. В связи с этим возникает поляризация образца в области контакта и, соответственно, возникает контактное электрическое поле с напряжённостью Ек , направленное от электронного к дырочному полупроводнику (см. рис. 6а). Вследствие этого переходная область будет сильно обеднена: правая граница - электронами проводимости, а левая - дырками. Поэтому электрическое сопротивление переходного слоя возрастает. При наложении внешнего поля , направленного от электронного полупроводника к дырочному

(+ -) результирующая напряженностьбудет усиливаться, что приведет к дальнейшему обеднению переходного слоя носителями тока (электронами и дырками) и сопротивление его еще больше возрастает. Практически ток через контакт не пойдет (см. рис. 6б, левый участок зависимости I от U ). Если внешнее поле направлено против , то достаточно небольшого поля , чтобы оно скомпенсировало поле . Тогда электроны проводимости и дырки будут беспрепятственно проникать в переходный слой и сопротивление его практически исчезнет. Ток через контакт будет проходить  (см. рис. 6б , правый участок зависимости I от U ). Зависимость силы тока I от напряжения U называется вольтамперной характеристикой р-n перехода (см. рис. 6б). Неодинаковость сопротивления р-n перехода в прямом и обратном направлениях позволяет использовать р-n переходы для выпрямления переменного тока в выпрямителях, детекторах и т.д. Полупроводниковое устройство, содержащее р-n переход называется полупроводниковым или кристаллическим диодом. Полупроводниковые триоды (транзисторы) используют р-n-р или n-р-n переходы. 

9.8. Понятие о сверхпроводимости Явление сверхпроводимости заключается в скачкообразном исчезновении сопротивления при очень низких температурах (см. рис. 7, где представлена зависимость удельного сопротивления r от Т для талия, ртути и свинца). Температура, при которой происходит этот процесс, называется критической температурой Тк. В этом случае слабое магнитное поле не проникает в сверхпроводник, т. е. для него m = 0 . Сильное магнитное поле разрушает сверхпроводящее состояние. Теорию сверхпроводимости создали Бардин, Купер и

Шриффер (БКШ). Согласно этой теории электрон немного притягивает к себе соседние положительные ионы решётки, слегка деформируя её. Электрон и деформированная решётка создают положительно заряженную систему, к которой притягивается второй электрон. Наиболее энергетически выгодным будет такое состояние, когда два электрона вращаются по окружности вокруг деформированной положительно заряженной области решётки. Такие пары электронов

называются куперовскими парами. Эта пара движется в поле как единая частица - бозон. В настоящее время реализована сверхпроводимость при относительно высоких температурах. 

III Физика атомного ядра и элементарных частиц

 В двух последних лекциях курса общей физики будут изучены некоторые элементы ядерной физики. В основном будут излагаться опытные факты.

Тепловые свойства твердых тел (кристаллов) Классическая теория теплоемкости кристаллов. Закон Дюлонга и Пти Простейшей моделью кристалла является правильно построенная кристаллическая решетка, в узлах которой помещаются атомы (или ионы, молекулы), принимаемые за материальные точки. Атом совершает тепловые колебания около положения равновесия.

Электрические свойства кристаллов Классическая электронная теория электропроводности металлов Опыты, проведенные  Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно.

Элементы ядерной физики Строение атомных ядер Ядро – центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный заряд. Размер атома составляет единицы ангстрем (1А=10-10м), а ядра ~ 10-4 – 10-5А. Ядро состоит из протонов р, имеющих заряд +е и нейтронов n – нейтральных частиц. Протоны и нейтроны называют одним словом нуклоны.

Удельная теплоемкость - физическая величина, показывающая, какое количество теплоты требуется для изменения температуры вещества массой в 1 кг на 1°C.

Изотермические и адиабатные процессы идеального газа


Работу идеального газа в изотермическом процессе, представленную площадью фигуры (Рис.1), лежащей под изотермой и ограниченной ординатами начала и конца процесса, легко вычислить, учитывая уравнение (3.1) и взяв интеграл от V1 до V2

 

 Изотермическими можно с хорошей степенью приближения считать достаточно медленные термодинамические процессы при отсутствии теплоизоляции, когда температуры всех тел успевают выровняться (время температурной релаксации много меньше времени, характерного для рассматриваемого процесса), и температуру всюду можно считать одинаковой.

Большой интерес для практики представляют также адиабатные процессы, которые протекают без теплообмена термодинамической системы с окружающей средой. Таковыми можно считать все процессы, протекающие либо в условиях хорошей теплоизоляции, либо настолько быстро, что теплообмен не успевает произойти (время релаксации много больше характерного времени процесса). Такие процессы можно с хорошим приближением считать обратимыми. В этом случае 1-е начало термодинамики (2.7) для газа можно записать в виде 

 

 dQ = CvdT + PdV = 0. (3.7)

 

Воспользовавшись уравнением состояния идеального газа (3.1), уравнение (3.7) можно переписать как



или


Воспользовавшись уравнением (2.8), получаем 



Здесь использовано общепринятое обозначение отношения теплоемкости при постоянном давлении к теплоемкости при постоянном объеме символом  то-есть  Cp/ Cv . Поскольку уравнение состояния (3.1) связывает три термодинамических параметра, оставляя независимыми лишь два из них, то уравнение адиабаты (3.8) можно переписать через другие параметры, например, через давление и объем, то-есть в координатах (P,V)


или в координатах температура-давление (T,P)


Очевидно, что все три выражения (3.8), (3.9) и (3.10) равносильны.


Мерой инертности твердого тела