Примеры решения и оформления задач контрольной работы
Лабораторные работы Примеры расчета типовых задач Расчетно-графическая работа Электрические цепи постоянного и переменного тока

Лабораторные работы, примеры расчета типовых задач по электротехнике

Основные элементы и параметры электрической цепи синусоидального тока

Пассивными линейными элементами (приемниками) электрической цепи синусоидального тока являются:

резистивный элемент (резистор), обладающий сопротивлением R;

индуктивный элемент (индуктивная катушка) с индуктивностью L;

емкостной элемент (конденсатор) с емкостью C.

Сопротивление, индуктивность и емкость являются коэффициентами пропорциональности в выражениях для напряжения u, потокосцепления  и количества электричества q в линейных цепях через ток и напряжение:

u = R∙i; ψ = L∙i; q = C∙i.

Индуктивный элемент рассматривают как зависимый источник напряжения, ЭДС которого по закону электромагнитной индукции , если он рассматривается как источник и положительное направление для ЭДС и тока принимают совпадающими, или , если он рассматривается как приемник и положительное направление ЭДС принимается противоположным условно-положительному направлению, выбранному для тока. В обоих случаях напряжение на зажимах индуктивного элемента

.

2.3.1. Электрическая цепь с резистивным элементом

Предположим, что через резистивный элемент с сопротивлением R подано синусоидальное напряжение . Необходимо установить, как будут изменяться ток и мощность этой цепи. Ток в цепи можно определить, пользуясь законом Ома для мгновенных значений:

,

или

, .

Синусоида тока имеет ту же частоту, что и синусоида напряжения и совпадает с ней по фазе.

Амплитуда тока связана с амплитудой напряжения соотношением

.

Поделив обе части уравнения на , получим соотношение для действующих значений тока и напряжения

.

Мгновенное значение мощности этой цепи равно произведению мгновенных значений напряжения и тока:

или

.

Среднее за период значение мощности

,

или 

P = U ∙ I.

Если в выражение для средней мощности вместо напряжения подставить его значение U = R ∙ I, то получим, что среднее значение мощности в цепи равно ее активной мощности:

P = U ∙ I = R ∙ I2.

Для иллюстрации изменений напряжения, тока и мощности в резисторе на рис. 2.3 построены графики для случая, когда начальная фаза ψu = 0. Для построения векторной диаграммы напряжения и тока цепи на комплексной плоскости запишем их комплексные амплитуды:

, .

Вектор, изображающий синусоиду напряжения на резисторе, совпадает по направлению с вектором, изображающим синусоиду тока.

При расчете цепей синусоидального тока вместо векторов комплексных амплитуд принято строить векторы комплексных действующих значений напряжения  и тока İ. Эти векторы совпадают по направлению с векторами İm и  и отличаются от них только по величине:

,

.

Из последнего уравнения можно получить закон Ома в комплексной форме для цепи с резистивным элементом

.

Электрическая цепь с идеальной индуктивной катушкой

Предположим, что в катушке с индуктивностью L, активное сопротивление которой равно нулю, имеется синусоидальный ток (рис. 2.4)

.

Этот ток создает в катушке синусоидально изменяющийся поток

* ,

амплитуда потока

,

а начальная фаза и частота равны начальной фазе и частоте тока. Синусоидально изменяющийся поток катушки наводит в ней ЭДС самоиндукции

.

Синусоида ЭДС самоиндукции отстает по фазе от синусоиды тока на угол сдвига фаз . Амплитуда синусоиды ЭДС ULm = ωLIm, а ее среднеквадратичное значение EL = ωLI. Внешнее напряжение источника u = uL уравновешивается ЭДС самоиндукции eL. Синусоида этого напряжения

.

Синусоида индуктивного напряжения идеальной катушки опережает по фазе ток на угол сдвига фаз . Амплитуда синусоиды напряжения на катушке ULm = ωLIm, среднеквадратичное значение этого напряжения UL = ωLI.

Комплексные амплитуды тока и напряжения:

,

.

Вектор напряжения на идеальной катушке опережает по фазе вектор тока на угол сдвига фаз . На рис. 2.4 приведены графики синусоид напряжения uL, тока i, ЭДС самоиндукции eL и соответствующие этим синусоидам векторы их комплексных значений для случая ψi = 0. Произведение  имеет размерность сопротивления, его обозначают xL и называют индуктивным сопротивлением катушки:

xL = ωL = 2πfL.

Величину jωL = jxL называют комплексом индуктивного сопротивления.

Закон Ома в комплексной форме для идеальной индуктивной катушке имеет вид

.

Мгновенное значение мощности в цепи с идеальной катушкой индуктивности


График этой мощности для случая ψi = 0 приведена на рис. 2.4. В первую четверть периода, когда ток и напряжение положительны, мощность также положительна. Энергия  от источника переходит в цепь и затрачивается на создание магнитного поля. К концу первой четверти периода поле имеет максимальную энергию , пропорциональную заштрихованной площади, ограниченной осью абсцисс и первой полуволной синусоиды мощности. Во вторую четверть периода ток i убывает, но остается положительным. Напряжение uL и мощность pL отрицательны. Энергия магнитного поля возвращается обратно в источник. К концу второй четверти периода весь запас энергии  будет возвращен источнику. Поэтому среднее за период значение мощности цепи с идеальной катушкой равно нулю:

.

Таким образом, в цепи с идеальной катушкой индуктивности происходит непрерывное колебание (обмен) энергии между источником и магнитным полем катушки без затраты энергии источника.

Амплитуду колебаний мощности в цепи с идеальной катушкой называют реактивной индуктивной мощностью и обозначают QL:

QL = ULI = xLI2.

Реактивная мощность имеет ту же размерность, что и активная мощность. Но с целью удобства для единиц измерения реактивной мощности принято другое наименование: вольт-ампер реактивный (ВАр).


Лабораторные работы, примеры расчета типовых задач по электротехнике