Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы К

На главную Конспекты по математике Нахождение координат вектора в произвольном базисе Пусть в правом ортонормированном базисе заданы векторы , , , . Цель данного раздела— научиться определять, образуют ли векторы a,b,c базис, и, в случае положительного ответа на этот вопрос, научиться находить координаты вектора d в базисе a,b,c. Для ответа на первый вопрос нужно найти abc. Если , то по предложению 10.26 векторы a,b,c— некомпланарные и, следовательно, образуют базис в трехмерном пространстве. Для нахождения координат напишем разложение вектора d по базису a,b,c с буквенными коэффициентами: . В силу предложений 10.4 и10.5 получим три соотношения для координат Из этой системы трех линейных уравнений находим три неизвестных , которые и служат координатами вектора d в базисе a,b,c. Компьютерная математика Mathematica электронный учебник Структура систем Mathematica и их идеология Следует отметить, что скромные (в смысле аппаратных требований) версии системы Mathematica 2.2.2 по сей день производятся фирмой Wolfram и используются в основном в системе образования. Они продаются по ценам в несколько раз меньшим, чем последующие реализации 3 и 4. Сейчас версии системы для IBM-совместимых ПК Mathematica 2, 3 и 4 распространяются в России на оптических дисках. Это намного повышает их доступность, хотя нередки случаи поставки не вполне работоспособных систем на дисках сомнительного происхождения. Примеры решения задач Примеры Интегрирование по частям Математика примеры вычислений интегралов Справочный материал и примеры к выполнению контрольной работы по математике Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы). Центральное место в системах класса Mathematica занимает машинно-независимое ядро математических операций — Kernel. Для ориентации системы на конкретную машинную платформу служит программный интерфейсный процессор Front End. Именно он определяет, какой вид имеет пользовательский интерфейс системы. В этой главе далее будет описан интерфейсный процессор для ПК с массовыми операционными системами Windows 95/98/NT. Разумеется, интерфейсные процессоры систем Mathematica для других платформ могут иметь свои нюансы, но особых различий с описанным интерфейсным процессором у них нет. Любопытны данные об объеме ядра разных реализаций системы Mathematica, приведенные в книге Стивена Вольфрама: ;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *