Конспекты по математике Общие свойства пределов

Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Конспекты по математике Общие свойства пределов Пример 2.16 Найдём предел Разделим числитель и знаменатель дроби на старшую степень , то есть на , и получим предел В этом пределе знаменатель стремится к 3, так как и (здесь мы применили теорему о пределе произведения для последнего слагаемого) и, следовательно, (здесь мы воспользовались линейностью предела). Поскольку предел знаменателя оказался не равен 0, то можно применить теорему о пределе отношения и получить, что Предел числителя, равный 2, мы нашли аналогично пределу знаменателя, пользуясь линейностью предела. Итак, Заметим, что предел отношения многочленов оказался равен отношению коэффициентов при старшей степени , то есть, в данном случае, при . Аналогично решаются и другие примеры на вычисление пределов отношения двух многочленов при , а также пределов отношения некоторых других функций, например, связанных с корнями из многочленов. Пример 2.17 Найдём предел Для этого поделим числитель и знаменатель дроби на (под знаком корня в знаменателе для этого придётся поделить на ): Поскольку , то подкоренное выражение стремится к 4, а весь знаменатель— к . Предел знаменателя оказался отличен от 0, поэтому предел отношения равен отношению пределов. Найдём предел числителя. Поскольку при всех (так как показатель степени отрицателен), то величина локально ограничена при базе и поскольку величина — бесконечно малая при этой базе, то произведение также бесконечно мало, то есть стремится к 0 при . Значит, предел числителя равен а исходный предел— Компьютерная математика Mathematica электронный учебник Ускорение численных расчетов и повышение их точности Большинство пользователей с трудом уловят разницу между версиями Mathematiea 3 и Mathematica 4. Именно поэтому основной материал данной книги полностью относится к этим двум последним версиям. Тем не менее, различия между версиями есть, и достаточно серьезные. Пожалуй, главной отличительной особенностью системы Mathematica 4 стало кардинальное ускорение численных расчетов. Традиционно системы символьной математики проигрывали численным системам, таким как MATLAB. До сих пор скорость вычислений в системе MATLAB в 5-10 раз превышала скорость вычислений, производимых системами символьной математики. Поэтому в системе Mathematica 4 были предприняты необычные для систем символьной математики и даже беспрецедентные меры по ускорению численных расчетов. Они перечислены ниже: Значительно ускорены все операции с матрицами, особенно большого размера. Примеры решения задач Площадь поверхности тела вращения Интегральное исчисление. Существенно оптимизированы алгоритмы для выполнения вычислений с числами, содержащими вплоть до миллиона знаков. Ускорен ввод и вывод очень больших целых чисел. Полностью сохраняется точность при вводе и выводе приближенных действительных чисел. Обеспечивается свертка и корреляция массивов любой размерности. Применены новые оптимизированные алгоритмы для преобразований Фурье. Ускорены процедуры численного решения полиномиальных уравнений. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *