Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций по математике Асимптоты графика функции Пример 7.4 График функции не имеет при вертикальной асимптоты, так как — ограниченная (числом 1) и, следовательно, локально ограниченная при и не стремящаяся к бесконечности функция. Хотя аргумент синуса — функция — имеет вертикальную асимптоту . Рис.7.4.График функции не имеет вертикальной асимптоты Пример 7.5 Прямая не является вертикальной асимптотой графика функции , поскольку здесь нельзя утверждать, что при или функция стремится к бесконечности. При некоторых малых значениях значения могут быть как угодно велики, однако при других малых функция обращается в 0: так, при () значения функции равны и стремятся к бесконечности при , а при всех вида () значения функции равны 0. В то же время как те, так и другие точки при увеличении попадают всё ближе и ближе к точке 0. Значит, функция не является бесконечно большой при , и прямая — не асимптота. Рис.7.5.График функции не имеет вертикальной асимптоты Итак, для нахождения вертикальных асимптот графика данной функции нужно исследовать точки разрыва функции и точки, лежащие на границах области определения функции, и выяснить, при приближении аргумента к каким из этих точек значения функции стремятся к бесконечности. Определение 7.2 Наклонной асимптотой графика функции при называется прямая , если выполнены два условия: 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при : (7.1) Наклонной асимптотой графика функции при называется прямая , если 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при : Рис.7.6.Графики функций, имеющие наклонные асимптоты при и при В случае, если наклонная асимптота расположена горизонтально, то есть при , она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота — частный случай наклонной асимптоты; прямая является горизонтальной асимптотой графика при или , если или соответственно. Решение задач по математике