Конспект лекций по математике Матрица линейного преобразования

Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций по математике Матрица линейного преобразования В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом. Пусть — -мерное линейное пространство, в котором задан базис , — линейное преобразование. Возьмем произвольный вектор . Пусть — его координатный столбец. Координатный столбец вектора обозначим . Запишем разложение вектора по базису пространства . Для образа этого вектора получим (19.2) Векторы имеют какие-то координатные столбцы, обозначим их , , …, соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс — номер вектора. Соответственно, Пример Найдём производные по и функции , неявно заданной в окрестности точки уравнениемПодставим это выражение в равенство (19.2) и, используя предложение 14.3, изменим порядок суммирования Это равенство означает, что -той координатой вектора служит . Составим матрицу из координатных столбцов векторов , …, Вычислим произведение матрицы на столбец Мы видим, что -ый элемент столбца совпадает с -ой координатой вектора . Поэтому (19.3) Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора. Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец — координатным столбцом образа второго базисного вектора и т.д. Решение задач по математике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *