Конспект лекций по математике Матрицы Умножение матриц

На главную Умножение матриц Определение 14.4 Произведением матрицы размеров на матрицу размеров называется матрица размеров , элементы которой вычисляются по формуле (14.5) где , . Во-первых, в этом определении нужно обратить внимание на то, что важен порядок сомножителей, нужно знать, какой сомножитель первый, а какой— второй. Во-вторых, нужно отметить, что произведение определено только в том случае, если число столбцов первого сомножителя равно числу строк второго. Если это условие не выполняется, то произведение не определено. В-третьих, размеры результата умножения определяются следующим образом: число строк результата равно числу строк первого сомножителя, а число столбцов результата равно числу столбцов второго сомножителя. Правило вычисления элементов произведения можно сформулировать следующим образом. Для того, чтобы вычислить элемент произведения, стоящий в -ой строке и -ом столбце, нужно взять -ую строку первого сомножителя и -ый столбец второго сомножителя, попарно перемножить их элементы, стоящие на одинаковых местах, и результаты сложить. (Точно так же мы поступаем, когда находим скалярное произведение двух векторов по их координатам, см. формулу(14.2).) Компьютерная математика Maple 7 Предисловие Автор данной книги, как и многие почитатели компьютерных вычислений, прошел долгий путь их реализации: от программируемых микрокалькуляторов до работы на малых и персональных ЭВМ, использующих универсальные языки программирования высокого уровня. Это нашло отражение в его ранних книгах [1-3]. Совсем недавно пользователь ЭВМ, решая даже простые численные задачи, был вынужден осваивать основы программирования и готовить кустарные программы, вряд ли нужные кому-либо еще, кроме их создателя. Между тем возможности компьютеров постоянно росли. Сейчас персональный компьютер (ПК) с микропроцессором класса Pentium II, III или 4 намного превосходит по своим возможностям первые ЭВМ, занимавшие целые комнаты и залы. А скорость вычислений нынешних ПК в сотни раз превосходит скорость вычислений легендарных IBM PC XT и AT (первых ПК) и вплотную приближается к скорости вычислений суперЭВМ недавнего прошлого. Примеры решения задач Замена переменных . Полярная система координат Любая точка на плоскости может быть однозначно определена при помощи различных координатных систем, выбор которых определяется различными факторами. Способ задания начальных условий для решения какой – либо конкретной технической задачи может определить выбор той или иной системы координат. Информатика, начертательная геометрия, ТОЭ, задачи по математике В связи с этим стал меняться взгляд на назначение компьютера. На первое место вышло применение их для работы с текстовыми процессорами (например, Microsoft Word) и прикладными программными системами для автоматизации офисной деятельности. Увы, при этом многие пользователи стали забывать о том, что ЭВМ изначально создавались для вычислений, а вовсе не для замены ими популярной, но ставшей неудобной пишущей машинки. Развитие мультимедиа привело к бурному применению компьютеров в роли игровых автоматов. В результате главный стимул развития «электронного помощника» создается отнюдь не высокоинтеллектуальными задачами. ;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *