Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Конспект лекций по математике Многочлен Тейлора Главы из учебника Многочлен , наиболее подходящий (с некоторой точки зрения) для этой цели, называется многочленом Тейлора для данной функции; найдя его по заданной функции , мы сможем вместо сложного вычисления значений функции приближённо заменять это вычисление на вычисление значений многочлена . Уточним теперь постановку задачи. Пусть функция определена в некоторой окрестности некоторой точки и имеет всюду в окрестности производные при . Многочленом Тейлора степени в точке называется такой многочлен степени , такой, что его значение и значение всех его производных, вычисленные в точке , равны соответствующим значениям функции и её производных до порядка в этой же точке: Если это условие совпадения выполнено, то графики функций и , по крайней мере при , близких к , будут идти весьма тесно друг к другу. Равенство означает, что графики проходят через одну и ту же точку ; равенство означает, что эти графики имеют в этой общей точке совпадающие касательные (так как общее значение производной — это общий угловой коэффициент касательной); равенство означает, как мы убедимся ниже, что эти графики имеют в общей точке одинаковую кривизну, и т. д. Для нахождения вида многочлена Тейлора для заданной функции сделаем сначала следующее замечание. Любой многочлен степени вида Производная функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции можно представить в виде, расположенном по степеням бинома : и наоборот, раскрыв скобки в последней формуле, мы можем получить многочлен по степеням . Действительно, положив , мы можем подставить в правую часть формулы , раскрыть степени при по формуле бинома Ньютона, а потом привести подобные члены. Все коэффициенты (кроме ) и свободный член при этом изменятся на некоторые другие ( в нашей формуле), но получится многочлен по степеням бинома , имеющий ту же степень . Компьютерная математика Mathematica электронный учебник Некоторые правила культурного программирования Выше мы описали множество методов программирования на языке системы Mathematica. Попробуем сформулировать некоторые общие правила так называемого культурного программирования с учетом специфики систем Mathematica, позволяющие создавать надежные и эффективные программные средства: Тщательно продумайте алгоритм решения задачи. Порой выбор лучшего алгоритма позволяет кардинально повысить скорость вычислений и упростить программу (впрочем, одновременно это достигается далеко не всегда). Используйте прежде всего возможности функционального программирования — из него родились основы языка программирования систем Mathematica. Примеры решения задач Геометрические приложения определенного интеграла Интегральное исчисление. Разделяйте задачу на малые части и оформляйте их в виде законченных программных модулей — прежде всего функций. Pie скупитесь на программные комментарии — чем их больше, тем понятнее программа и тем больше шансов, что она заинтересует пользователей и будет долго жить. Учтите, что ясность программы в большинстве случаев важнее скорости ее работы. Тщательно готовьте сообщения об ошибках и диагностические сообщения, а также наименования программных модулей и описания их назначения. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра