Конспект лекций по математике Нахождение собственных чисел и собственных векторов матриц

Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций по математике Нахождение собственных чисел и собственных векторов матриц Теорема 19.1 Собственными числами матрицы являются корни уравнения и только они. Доказательство. Пусть столбец — собственный вектор матрицы с собственным числом . Тогда, по определению, . Это равенство можно переписать в виде . Так как для единичной матрицы выполнено , то . По свойству матричного умножения и предыдущее равенство принимает вид (19.4) Допустим, что определитель матрицы отличен от нуля, . Тогда у этой матрицы существует обратная . Из равенства(19.4) получим, что , что противоречит определению собственного вектора. Значит, предположение, что , неверно, то есть все собственные числа должны являться корнями уравнения . Пусть — корень уравнения . Тогда базисный минор матрицы не может совпадать с определителем матрицы и поэтому , — порядок матрицы . Уравнение(19.4) является матричной записью однородной системы линейных уравнений с неизвестными , являющимися элементами матрицы-столбца . По теореме 15.3 число решений в фундаментальной системе решений равно , что больше нуля. Таким образом, система(19.4) имеет хотя бы одно ненулевое решение, то есть числу соответствует хотя бы один собственный вектор матрицы . Методика расчёта линейных электрических цепей переменного тока Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = …Ом, Z 2 = …Ом, Z 3 =… Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения Определитель является многочленом степени от переменного , так как при вычислении определителя никаких арифметических действий кроме сложения, вычитания и умножения выполнять не приходится. Определение 19.5 Матрица называется характеристической матрицей матрицы , многочлен называется характеристическим многочленом матрицы , уравнение называется характеристическим уравнением матрицы . Решение задач по математике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *