Конспект лекций по математике Формула ТейлораУпражнения

Формула ТейлораУпражнения Упражнение 6.5 Найдите разложение по формуле Тейлора в точке функций а) ; б) ; в) ; г) ; д) ; е) ; ж) ; з) . Ответы: а) ; функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции б) ; в) ; г) ; д) ; е) ; ж) ; з) . Упражнение 6.6 Найдите следующие пределы, применив разложение числителя и знаменателя по формуле Тейлора: а) ; б) . Ответы: а) ; б) . Компьютерная математика Mathematica электронный учебник Что такое визуально-ориентированное программирование Под визуально-ориентированным программированием обычно понимается автоматическая генерация кодов программ на некотором языке программирования при активизации различных графических объектов — чаще всего кнопок с наглядным изображением программируемых действий или с надписями, указывающими на-такие действия. Примеры решения задач Нахождение площади криволинейного сектора . Mathematica изначально реализует визуально-ориентированное программирование с помощью палитр, содержащих математические операторы и символы. Однако язык программирования системы поддерживает возможность создания таких панелей для произвольных программных модулей. Целый ряд документов, готовящих средства визуально-ориентированного программирования, включен в справочную систему и дает наглядное представление о технике программирования в этой области. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *