Лекции по математике Непрерывность функций Свойства функций, непрерывных в точке

Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Лекции по математике Непрерывность функций Свойства функций, непрерывных в точке Поскольку точки непрерывности функции задаются условием , то часть свойств функций, непрерывных в точке , следует непосредственно из свойств пределов. Сформулируем их в виде следующей теоремы. Теорема 3.1 Пусть функции и непрерывны в точке . Тогда функции , , непрерывны в точке . Если , то функция также непрерывна в точке . Доказательство. Оно сразу же следует из теорем о пределах 2.8, 2.9, 2.10 и следствия 2.5. Как непосредственное следствие этой теоремы получается следующее Предложение 3.3 Рассмотрим множество всех функций, определённых в некоторой фиксированной окрестности точки и непрерывных в этой точке. Тогда это множество является линейным пространством, то есть замкнуто относительно сложения и умножения на постоянные: Производная функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции Доказательство. Действительно, постоянные и — это непpеpывные функции (в любой точке); по пpедыдущей теоpеме тогда непpеpывны в точке пpоизведения и . Но тогда по этой же теоpеме непpеpывна в точке и сумма . Теорема 3.2 Пусть функции и таковы, что существует композиция , . Пусть функция непрерывна в точке , а функция непрерывна в соответствующей точке . Тогда композиция непрерывна в точке . Доказательство. Заметим, что равенство означает, что при будет . Значит, (последнее равенство следует из непрерывности функции в точке ). Значит, а это равенство означает, что композиция непрерывна в точке . Заметим, что, очевидно, в предыдущих двух теоремах можно было бы заменить базу на односторонние базы или и получить аналогичные утверждения для непрерывности слева или справа: Компьютерная математика Mathematica электронный учебник Математические системы В 80-е годы возможностями символьной математики увлекся защитивший докторскую диссертацию Стивен Вольфрам (Stephen Wolfram) из США (рис. 1.1). Его интересы были столь серьезны, что он основал фирму Wolfram Research, Inc., приступившую к созданию проекта престижной математической системы Mathe- matica. Версия Mathematica 1.0 этой системы, появившаяся в 1988 г., уже устарела, и самой известной разработкой фирмы стала версия 2.0 системы Mathematica 2, появившаяся в 1991 г. и благополучно дожившая до наших дней. У нас она впервые стала известна благодаря обзорам Примеры решения задач Определенный интеграл Интегральное исчисление. Цели нового проекта были достаточно амбициозными — разработка мощного и универсального ядра системы (Kernel), способного работать на различных компьютерных платформах, создание многофункционального языка программирования, ориентированного на математические приложения, подготовка современного пользовательского интерфейса и обширного набора прикладных пакетов и расширений системы (Packages), мощного языка программирования математических преобразований и вычислений. Система приобрела свойства адаптации и обучения новым математическим законам и закономерностям. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *