Лекции по математике Непрерывность функции на интервале и на отрезке

Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Лекции по математике Непрерывность функции на интервале и на отрезке Непрерывность функции на интервале и на отрезке Определение 3.3 Пусть — некоторая функция, — её область определения и — некоторый (открытый) интервал (может быть, с и/или ). Назовём функцию непрерывной на интервале , если непрерывна в любой точке , то есть для любого существует (в сокращённой записи: Пусть теперь — (замкнутый) отрезок в . Назовём функцию непрерывной на отрезке , если непрерывна на интервале , непрерывна справа в точке и непрерывна слева в точке , то есть Производная функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции Пример 3.13 Рассмотрим функцию (функция Хевисайда) на отрезке , . Тогда непрерывна на отрезке (несмотря на то, что в точке она имеет разрыв первого рода). Рис.3.15.График функции Хевисайда Аналогичное определение можно дать и для полуинтервалов вида и , включая случаи и . Однако можно обобщить данное определение на случай произвольного подмножества следующим образом. Введём сначала понятие индуцированной на базы: пусть — база, все окончания которой имеют непустые пересечения с . Обозначим через и рассмотрим множество всех . Нетрудно тогда проверить, что множество будет базой. Тем самым для определены базы , и , где , и — базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки (их определение см. в начале текущей главы). Компьютерная математика Mathematica электронный учебник Зарождение и развитие систем компьютерной алгебры Эру создания компьютерной символьной математики принято отсчитывать с начала 60-х годов. Именно тогда в вычислительной технике возникла новая ветвь компьютерной математики, не совсем точно, но зато броско названная компьютерной алгеброй. Речь шла о возможности создания компьютерных систем, способных осуществлять типовые алгебраические преобразования: подстановки в выражениях, упрощение выражений, операции со степенными многочленами (полиномами), решение линейных и нелинейных уравнений и их систем, вычисление их корней и т. д. При этом предполагалась возможность получения аналитических (символьных) результатов везде, где это только возможно. Примеры решения задач Свойства Определенный интеграл Интегральное исчисление. К сожалению, книги по этому направлению были способны лишь отпугнуть обычного читателя и пользователя компьютера от изучения возможностей компьютерной алгебры в силу перенасыщенности их узкоспециальным теоретическим материалом и весьма специфического языка описания. Материал таких книг, возможно, интересен математикам, занимающимся разработкой систем компьютерной алгебры, но отнюдь не основной массе их пользователей. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *