Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Лекции по математике Определение непрерывности функции Мы повторим здесь определение непрерывности функции, данное выше, в главе о пределах. Определение 3.1 Пусть функция определена на некотором интервале , для которого — внутренняя точка. Функция называется непрерывной в точке , если существует предел при и этот предел равен значению , то есть Пусть функция определена на некотором полуинтервале , для которого — левый конец. Функция называется непрерывной справа в точке , если существует предел при и этот предел равен значению , то есть Производная функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции Пусть, наконец, функция определена на некотором полуинтервале , для которого — правый конец. Функция называется непрерывной слева в точке , если существует предел при и этот предел равен значению , то есть Из теоремы о связи двустороннего предела с односторонними (теорема 2.1) сразу следует, как уже отмечалось в главе 2, что имеет место следующее предложение. Предложение 3.1 Функция тогда и только тогда непрерывна в точке , когда она непрерывна в точке справа и слева, то есть когда выполнены следующие условия: 1) функция определена в точке и в некоторой окрестности этой точки; 2) существует предел значений функции слева: ; 3) существует предел значений функции справа: ; 4) эти два предела совпадают между собой и со значением функции в точке : . Рис.3.1.Функция непрерывна: пределы слева и справа совпадают с Точка , в которой функция непрерывна, называется точкой непрерывности функции ; так же определяются точки непрерывности слева и справа. Компьютерная математика Mathematica электронный учебник Математические системы В 80-е годы возможностями символьной математики увлекся защитивший докторскую диссертацию Стивен Вольфрам (Stephen Wolfram) из США (рис. 1.1). Его интересы были столь серьезны, что он основал фирму Wolfram Research, Inc., приступившую к созданию проекта престижной математической системы Mathe- matica. Версия Mathematica 1.0 этой системы, появившаяся в 1988 г., уже устарела, и самой известной разработкой фирмы стала версия 2.0 системы Mathematica 2, появившаяся в 1991 г. и благополучно дожившая до наших дней. У нас она впервые стала известна благодаря обзорам Примеры решения задач Определенный интеграл Интегральное исчисление. Цели нового проекта были достаточно амбициозными — разработка мощного и универсального ядра системы (Kernel), способного работать на различных компьютерных платформах, создание многофункционального языка программирования, ориентированного на математические приложения, подготовка современного пользовательского интерфейса и обширного набора прикладных пакетов и расширений системы (Packages), мощного языка программирования математических преобразований и вычислений. Система приобрела свойства адаптации и обучения новым математическим законам и закономерностям. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра