Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты На главную Математика лекции и задачи «Вычисление интегралов» Криволинейные интегралыФормула ГринаРассмотрим область типа A ( см. рис. ) D={(x,y):y1(x)£ y £ y2(x), xÎ[a,b]}, где y1(x)£ y2(x), две непрерывные функции на отрезке [a,b].Границу этой области с положительным направлением обхода обозначим G . Пусть в области D задана функция P(x,y), непрерывная там вместе с . Тогда справедлива формула= -. (1)Доказательство. ===-=.Аналогично, можно показать, что для области типа B (см. рис. )справедлива формула= . (2)Если область является одновременно областью и типа A и типа B , то из (1), (2) для поля =(P,Q) получается формула (3)Формулы (1), (2), (3) называются формулами Грина.Замечание. Формула (3) верна и для областей более общего вида. В частности, если область можно разбить непрерывными кривыми на конечное число областей, для каждой из которых формула (3) справедлива, то эта формула будет верна и для всей области. Математика MATLAB Электронный учебник Особенности графики системы MATLAB С понятием графики связано представление о графических объектах, имеющих определенные свойства. В большинстве случаев об объектах можно забыть, если только вы не занимаетесь объектно-ориентированным программированием задач графики. Связано это с тем, что большинство команд высокоуровневой графики, ориентированной на конечного пользователя, автоматически устанавливает свойства графических объектов и обеспечивает воспроизведение графики в нужных системе координат, палитре цветов, масштабе и т. д. На более низком уровне решения задач используется ориентированная на программиста дескрипторная графика (Handle Graphics), при которой каждому графическому объекту в соответствие ставится особое описание — дескриптор, на который возможны ссылки при использовании графического объекта. Дескрипторная графика позволяет осуществлять визуальное программирование объектов пользовательского интерфейса — управляющих кнопок, текстовых панелей и т. д. Команды дескрипторной графики могут использоваться в высокоуровневой графике, например, для удаления осей, изменения цвета и т. д. в уже построенных графических объектах. Эти обширные возможности делают графику MATLAB одной из лучших среди графических подсистем систем компьютерной математики (СКМ). Несмотря на обилие графических команд, их синтаксис достаточно прост и легко усваивается даже начинающими пользователями. Руководствуясь правилом описания «от простого к сложному», мы рассмотрим сначала графику функций одной переменной, а затем трехмерную графику, специальную, анимационную и, наконец, дескрипторную.