Проводники, полупроводники и изоляторы Два основных метода интегрирования Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную Звездчатые формы и соединения тел Платона В C++ имеется операция разрешения области действия Примеры решения задач типовых и курсовых расчетов по математике Комплексные числаДействия над комплексными числами в тригонометрической и показательной формах.Умножение. Модуль произведения равен произведению модулей, аргумент произведения равен сумме аргументов: (2.15) Деление. Модуль частного равен частному модулей, аргумент частного равен разности аргументов: (2.16)Возведение в целую степень п. Модуль возводится в эту степень, аргумент умножается на п. (2.17)Извлечение корня степени п. Извлекается арифметический корень из модуля, общее значение аргумента делится на п. Корень имеет ровно п различных значений, если (2.18)Формулы (2.17) и (2.18) называются формулами Муавра. Квадратичные формы и их применение Определение. Квадратичной формой переменных ,принимающих числовые значения , называется числовая функция вида , где — числа, называемые коэффициентами квадратичной формы. Определение. Матрицей квадратичной формы переменных , называется симметрическая матрица порядка , элементы главной диагонали которой совпадают с коэффициентами при квадратах переменных, а каждый недиагональный элемент, расположенный в ой строке ом столбце, равен половине коэфициента при в квадратичной форме. Определение. Рангом квадратичной формы называется ранг её матри-цы. Квадратичная форма может быть записана в матричном виде где матрица квадратичной формы и . Определение. Квадратичная форма называется канонической (имеет канонический вид), если коэфициенты при , то есть, если матрица квадратичной формы диагональная и следовательно ., где не все коэффициенты равны нулю. Теорема (Лагранжа). Для всякой квадратичной формы существует такой базис, в котором квадратичная форма имеет канонический вид. Определение. Нормальным видом квадратичной формы называется такой канонический вид, в котором коэффициенты при квадратах неизвестных (не считая нулевых) равны . Определение. Квадратичная форма называется положительно (отрицательно) определённой, если при всех 108 и положительно (отрицательно) полуопределённой,если при всех . Теорема (критерий Сильвестра). Для того чтобы квадратичная форма была положительно определённой, необходимо и достаточно чтобы все угловые миноры матрицы квадратичной формы были положительны,то есть, чтобы Здесь -угловые миноры матрицы квадратичной формы. Следствие. Для того чтобы квадратичная форма была отрицательно определённой, необходимо и достаточно, чтобы знаки угловых миноров матрицы квадратичной формы чередовались следующим образом: Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция колодцы опалубка Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра