Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций математического анализа. Задачи Метод Гаусса. (Карл Фридрих Гаусс (1777-1855) немецкий математик) В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных. Рассмотрим систему линейных уравнений: Разделим обе части 1–го уравнения на a11 ¹ 0, затем: 1) умножим на а21 и вычтем из второго уравнения 2) умножим на а31 и вычтем из третьего уравнения и т.д. Получим: , где d1j = a1j/a11, j = 2, 3, …, n+1. dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1. Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д. Пример. Решить систему линейных уравнений методом Гаусса. Составим расширенную матрицу системы. А* = Таким образом, исходная система может быть представлена в виде: , откуда получаем: x3 = 2; x2 = 5; x1 = 1. Пример. Решить систему методом Гаусса. Составим расширенную матрицу системы. Таким образом, исходная система может быть представлена в виде: , откуда получаем: z = 3; y = 2; x = 1. Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом. Для самостоятельного решения: Ответ: {1, 2, 3, 4}. Пример 4. Выделить интегральную кривую уравнения , проходящую через точку .Решение. Очевидно, что данное уравнение имеет вид , где и — однородные функции второй степени однородности. Разрешим это уравнение относительно ..Положим . Тогда .Последнее уравнение – это уравнение с разделяющими переменными.Разделяя переменные в уравнении, получаем .Проинтегрируем обе части уравнения . Полагая здесь , получим общий интеграл данного уравнения. Так как для интересующей нас кривой при , то . Итак, . Решение задач по математике