Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Элементы квантовой механики Кинематика примеры задач Расчёт цепей переменного тока Трехфазная цепь переменного тока Магнитные цепи Расчёт параметров трёхфазного трансформатора Создание ядерных реакторов привело к промышленному применению ядерной энергии. Энергетические запасы ядерного горючего в рудах примерно на два порядка превышает запасы химических видов топлива. Поэтому, если, как предполагается, основная доля электроэнергии будет вырабатываться на АЭС, то это, с одной стороны, снизит стоимость электроэнергии, которая сейчас сравнима с вырабатываемой на тепловых электростанциях, а с другой — решит энергетическую проблему на несколько столетий и позволит использовать сжигаемые сейчас нефть и газ в качестве ценного сырья для химической промышленности. Стандартная теория Электрослабые взаимодействия. Вайнберг, Глэшоу и Салам (70-ые годы XX столетия) создали единую теорию электрослабых (т. е. электромагнитных и слабых) взаимодействий. Из этой теории вытекает, что переносчиком слабых взаимодействий является группа частиц, получивших название промежуточных векторных бозонов. В эту группу входят две заряженные частицы (W+ и W-) и одна нейтральная (Z0) (W — первая буква английского слова weak — слабый). Таким образом, слабые взаимодействия подобны электромагнитным, переносчиками которых также являются векторные бозоны — фотоны. Векторными называются частицы со спином, равным единице (и отрицательной четностью). В отличие от фотона, эти частицы весьма массивны, что объясняет проявление слабых взаимодействий на очень коротких расстояниях (см. табл. 17.1), в отличие от дальнодействующих электромагнитных. Промежуточные бозоны, обнаруженные в 1982— 1983 гг, — нестабильные частицы. Характерные схемы распада промежуточных бозонов имеют вид (17.10) Бета-распад происходит за счет слабого взаимодействия. Следовательно, в нем должен участвовать промежуточный бозон. В соответствии с этим, например, распад нейтрона Термодинамические потенциалы или функции состояния Все законы в термодинамике основываются на использовании функций состояния, называемых термодинамическими потенциалами. , (17.11) в действительности представляет собой двухступенчатый процесс: затем (17.12) Стандартная модель. Теория взаимодействия фундаментальных частиц (шести кварков и шести лептонов плюс такое же число их античастиц), обменивающихся глюонами (сильные взаимодействия), фотоном и тройкой бозонов (электрослабые взаимодействия) известна как Стандартная теория, или Стандартная модель. Она синтезирует современные представления обо всех элементарных частицах и трех фундаментальных взаимодействиях — сильном, электромагнитном и слабом. Гравитационное взаимодействие модель не рассматривает, поскольку его влияние в процессах физики частиц при достигнутых энергиях пренебрежимо мало. Стандартная теория основана на совокупности экспериментальных данных и на их интерпретации, даваемой теорией электрослабого взаимодействия и квантовой хромодинамикой. На пути к более общей физической теорииЗа пределами Стандартной модели сейчас идет только поиск, устоявшейся теории нет. Существуют гипотезы о том, что кварки и лептоны сами состоят из более фундаментальных частиц – «преонов». То же относится к W+, W- и Z0-бозонам.Было принято считать, что масса нейтрино равна нулю, хотя теоретических оснований к этому нет. Более того, имеются определенные экспериментальные указания на то, что масса нейтрино отлична от нуля и составляет величину примерно в миллион раз меньшую массы электрона. Если это так, то возможны процессы превращения нейтрино одного вида в нейтрино другого — осцилляции нейтрино.После открытий в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Прилагаются значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел примерно 14 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики. На рубеже XIX-XX веков, кризис в физике успешно разрешился созданием теории относительности и квантовой механики, которые полностью перевернула наши представления об окружающем мире. А ведь совсем незадолго до эпохальных событий лорд Кельвин сказал свою знаменитую фразу о том, что в физике ничего нового сделать нельзя. Но в последние годы двадцатого века произошли новые эпохальные события. Обнаружилось, что результаты измерений гравитационной массы, полученные разными методами, расходятся. И физики заговорили о некой темной материи, которая взаимодействует с обычной только с помощью силы тяготения. Затем вдруг оказалось, что Вселенная последние два миллиарда лет расширяется с ускорением, то есть взрывается во второй, после Большого взрыва, раз. Это наблюдение породило еще одну сущность — темную энергию. Этой таинственной субстанции дали много других названий — от квинтэссенции и физического вакуума, наполненного невидимой энергией до лямбда-члена уравнений Эйнштейна. А еще ее называют антигравитацией, потому что чем больше темной энергии где-то сосредоточится, тем сильнее в этом месте массы будут друг от друга отталкиваться — в полном противоречии с законом тяготения Ньютона. После того, как вдруг выяснилось, что 95% Вселенной состоит неизвестно из чего, возникает широкий простор для поиска, для создания новых теорий, порой очень смелых. Уравнение Шредингера. Особенности волнового уравнения для микрочастицы.Классическая физика:md2x/dt2 = F(t)V = dx/dt = 1/m (интеграл) (F(t)dt+C)x = (интеграл) (Vdt + C’)квантовая механика:- движение расплывчатоеΨ(x,t)W = (интеграл от x1 до x2)|Ψ(x,t)|2dx