Проводники, полупроводники и изоляторы Два основных метода интегрирования Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную Звездчатые формы и соединения тел Платона В C++ имеется операция разрешения области действия Математика конспекты Определенные и неопределенные интегралы Интегральное исчисление Интегрирование некоторых иррациональностей 1. Через R(u,v,…,w) здесь обозначается рациональная функция, то есть выражение, которое может быть получено с помощью конечного числа операций сложения и деления над выражениями u,v,…,w и произвольными константами. Отметим, что суперпозиция рациональных функций будет также рациональной функцией.Пример. Функция указанного в интеграле вида представлена ниже=Интегралы такого вида приводятся к интегралам от рациональных функций с помощью замены , m – общий знаменатель дробей a,…,g. В рассмотренном выше примере m=18.2. Подстановки Эйлераa) a>0, В этом случае ax2+bx+c=ax2+2 xt+t2, откуда -рациональная функция. Таким образом, подинтегральное выражение примет вид=R1(t)-рациональная функция от t. Кроме того dx=R2(t)dt.b) Корни x1,x2 квадратного трехчлена ax2+bx+c вещественные, тогда ax2+bx+c =a(x — x1)(x — x2). Если x1 = x2 , то =|x – x1| и иррациональность отсутствует. Если x1 ¹ x2, то полагают и задача сводится к ранее рассмотренной.В этом случае можно так же сделать замену .c) c>0. В этом случаеax2+bx+c= x2t2+2 xt+ с, ax+b= xt2 +2t, — рациональная функция. После замены получим=R1(t) — рациональная функция от t, dx=R2(t)dt.Можно показать, что этими тремя подстановками исчерпываются всевозможные случаи (если a<0 и c<0 и действительных корней нет, то выражение ax2+bx+c<0 для всех x). Математика MATLAB Отличия новой реализации MATLAB 6 от предшествующих версий 5.* настолько значительны, что вряд ли стоит пользоваться настоящим изданием для знакомства с предшествующими версиями MATLAB. Читателям, использующим MATLAB 5.*, в том числе любителям Macintosh, VAX/micro VAX и SunOS, можно рекомендовать уже упомянутую ранее изданную литературу по этим системам, все еще верой и правдой служащим многим пользователям. MATLAB 5 — развивающаяся система, которая будет обслуживать пользователей RISC- и VAX-станций Compaq в системах реального времени, пользователей компьютеров Apple, компьютеров на базе процессоров семейства Motorola 68000 и всех тех, кому важна совместимость с Macintosh, Next или RISC-серверами и рабочими станциями под управлением OpenVMS. Новейшие патчи к системам MATLAB 5 можно всегда получить с web-узла фирмы Math Works. Оглавление книги может служить подробным тематическим указателем, а помещенный в конце книги алфавитный указатель поможет читателю быстро найти интересующие его сведения. Операторы и функции MATLAB 6 описаны настолько подробно, что книга может служить руководством пользователя по этой системе и выполнять функции самоучителя. В целом книга имеет вполне законченный характер и полезна всем, кто собирается изучать или уже использует любую реализацию системы MATLAB 6. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра