Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Лекции по математике Первый и второй замечательные пределы Упражнение 2.6 Покажите, что имеют место также равенства и На этой основе, применяя теоремы о связи двусторонних пределов с односторонними, покажите, что и Формулы в этих замечании и упражнении представляют собою другую форму записи второго замечательного предела. Мы сохраним название второй замечательный предел за всеми этими формулами. Пример 2.22 Найдём предел . Здесь параметр — фиксированное число. При вычислении предела он будет рассматриваться как постоянная. Сделаем замену , тогда и . Поэтому (Здесь мы воспользовались, пока на интуитивном уровне, тем, что степенная функция непрерывна, то есть что . Более подробно понятие непрерывности функций мы будем изучать ниже, в разделе Использование непрерывности функций при вычислении пределов.) Полученная формула даёт нам возможность выразить экспоненциальную функцию как некоторый предел. С помощью похожей замены вычисляются пределы функций вида в случае, когда основание степени при некоторой базе стремится к 1, а показатель степени — к бесконечности (то есть является бесконечно большой функцией при данной базе; о бесконечно больших см. ниже, в разделе Бесконечно большие величины и бесконечные пределы). Такие выражения, а также и связанные с ними пределы, называются неопределённостями вида . О неопределённостях других видов пойдёт речь ниже, после примера 2.29. Обратим внимание читателя, что — это лишь условная запись: 1 здесь указывает, что основание степени стремится к 1 (и вовсе не обязательно равно 1); в «показателе степени» стоит вообще не число, а символ бесконечности. Поэтому было бы грубой ошибкой, встретив такую условную запись (или написав её), сделать вывод о том, что единица, мол, в любой степени даёт единицу, и поэтому ответ равен единице. С условными символами в этой записи нельзя действовать так же, как с числами. Предыдущий пример, в котором основание степени стремится к 1, а показатель степени к , даёт как раз неопределённость вида . Однако значение предела равно , а этот результат может быть любым положительным числом, в зависимости от того, какое значение взято. Вот ещё один пример на раскрытие неопределённости вида . Пример 2.23 Найдём предел . Здесь основание степени имеет предел а показатель степени . Поэтому можно применять тот же приём сведения ко второму замечательному пределу, что в предыдущем примере. Для начала найдём, что следует взять за бесконечно малую величину . Поскольку основание степени стремится к 1, то оно равно , где (см. теорему 2.4). Значит, Теперь преобразуем функцию, стоящую под знаком предела: Выражение, стоящее в квадратных скобках, имеет вид и при стремится к числу (это второй замечательный предел), а предел показателя степени мы найдём отдельно: Поэтому (Мы воспользовались тем, что если и , то . Это следует из непрерывности показательной и логарифмической функций, если учесть, что .) Замечание 2.8 Не любые пределы величин вида вычисляются с помощью сведения ко второму замечательному пределу. Ещё раз напомним, что так надо поступать лишь в случае, когда основание степени при данной базе стремится к 1, а показатель степени — к бесконечности. В иных ситуациях можно бывает для вычисления предела обойтись более простыми рассуждениями. Например, при нахождении предела можно заметить, что основание степени стремится к , так что получается формально . Это выражение не является неопределённостью (в отличие от выражения ), так как основание степени при достаточно больших близко к (и заведомо меньше, скажем, ) и при возведении в неограниченно увеличивающуюся степень будет меньше и, следовательно, будет стремиться к 0. Так что и прибегать к помощи второго замечательного предела не пришлось. Решение задач по математике