Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты На главную Математика лекции и задачи «Вычисление интегралов» Дифференциальные операторы Дифференциальные операторы 2-го порядкаrot grad u = [ , u]= 0div rot V = (,[,V]) = 0Du = div grad u = (,u) = . Оператор Лапласа.Функция u называется гармонической в некоторой области, если Du =0 в этой области.grad div Vrot rot VПример 5. (4447) Найти поток вектора гравитационного поля тяготения точечной массы, расположенной в начале координат V=mr через замкнутую поверхность Ф , не проходящую через начало координат в направлении внешней нормали.В примере 4 было показано, что div V = 0 , поэтому вычисляемый поток будет равен нулю в случае, когда поверхность Ф не охватывает начало координат. В случае, когда гравитационная масса находится внутри области D, ограниченной поверхностью Ф рассмотрим сферу S с центром в начале координат целиком лежащую в области D и ориентированной внутренней нормалью. Тогда поток V через границу области с границей Ф + S ( область D с шаровой полостью ) будет равен нулю. Следовательно, искомый поток будет равен =—=m = m=m=4p m .Пример 6. (4449) Доказать, что =dxdydz . =(grad u , n) , откуда из равенства Du = div grad u и формулы Остроградского Гаусса следует требуемое равенство.Пример 7. Количества тепла, протекающее в поле температуры u за единицу времени через поверхность Ф в направлении ее нормали ( поток градиента температуры ) равен Q=, k – коэффициент внутренней теплопроводности (предполагается константой). По формуле Остроградского Гаусса =-k. Эта величина имеет смысл количества тепла, накопленного телом за единицу времени. Математика MATLAB Электронный учебник Графическая функция fplot Разумеется, MATLAB имеет средства для построения графиков и таких функций, как sin(x)/x, которые имеют устранимые неопределенности. Не обсуждая эти средства подробно, просто покажем, как это делается, с помощью другой графической команды — fplot: fplott’f(x)’. [xmin xmax]) Она позволяет строить функцию, заданную в символьном виде, в интервале изменения аргумента х от xmin до xmax без фиксированного шага изменения х. Один из вариантов ее применения демонстрирует рис. 3.3. Хотя в процессе вычислений предупреждение об ошибке (деление на 0) выводится, но график строится правильно, при х=0 sinx/x=l. Обратите также внимание на две используемые команды: clear (очистить)— очистка графического окна и grid on (сетка)— включение отображения сетки, которая строится пунктирными линиями.