Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин

Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций математического анализа. Задачи Условия параллельности и перпендикулярности прямой и плоскости в пространстве. Для того, чтобы прямая и плоскость были параллельны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были перпендикулярны. Для этого необходимо, чтобы их скалярное произведение было равно нулю. Для того, чтобы прямая и плоскость были перпендикулярны, необходимо и достаточно, чтобы вектор нормали к плоскости и направляющий вектор прямой были коллинеарны. Это условие выполняется, если векторное произведение этих векторов было равно нулю. Поверхности второго порядка. Определение. Поверхности второго порядка – это поверхности, уравнения которых в прямоугольной системе координат являются уравнениями второго порядка.Цилиндрические поверхности. Определение. Цилиндрическими поверхностями называются поверхности, образованные линиями, параллельными какой- либо фиксированной прямой. Рассмотрим поверхности, в уравнении которых отсутствует составляющая z, т.е. направляющие параллельны оси Оz. Тип линии на плоскости ХOY (эта линия называется направляющей поверхности) определяет характер цилиндрической поверхности. Рассмотрим некоторые частные случаи в зависимости от уравнения направляющих: 1) — эллиптический цилиндр. 2) — гиперболический цилиндр. 2) x2 = 2py – параболический цилиндр. Пример 3. Решить уравнение Лагранжа. Решение. Полагая , найдем. Дифференцируя это равенство по x, получим,или. Это линейное уравнение имеет общее решение,подставляя которое в формулу для y, получаем общее решение исходного уравнения в параметрической форме:, . Кроме того, уравнение имеет особые решения y=0 и y=x+1, соответствующие корням и уравнения . Решение задач по математике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *