Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин

Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Математический анализ Функции и их графики Пределы Вычисление производной Возрастание и убывание функции Матрицы Курсовая по Кузнецову Интегральное исчисление Вычисление объемов и площадей Конспект лекций математического анализа. Задачи Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если . Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет. Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. . Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условиеf(x) = A + a(x),где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а). Свойства бесконечно малых функций: 1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая. Используя понятие бесконечно малых функций, приведем доказательство некоторых теорем о пределах, приведенных выше. Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где, тогдаf(x) ± g(x) = (A + B) + a(x) + b(x)A + B = const, a(х) + b(х) – бесконечно малая, значитТеорема доказана. Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где, тогдаA×B = const, a(х) и b(х) – бесконечно малые, значит Решение задач по математике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *