Конспекты по математике Пределы Общее определение предела

Конспекты по математике Общее определение предела Заметим, что во всех определениях предыдущего пункта ключевым оказывалось определение набора тех множеств, в которые последовательно, при своём изменении в соответствии с рассматриваемым условием, попадает переменное ( или ), от которого зависит изменяющаяся величина ( или ). В случае условия эти множества имеют вид ; в случае — вид ; в случае — вид . Назовём их окончаниями базы предела при данном условии, а полный набор таких окончаний— базой предела. Базу предела будем обозначать так же, как само условие, а именно, , , и т.п. Таким образом, функции Додекаэдр — правильный двенадцатигранник, Такое поведение называется многозадачностью (multitasking) аксонометрические проекции Итак, база предела— это набор окончаний, которые должны удовлетворять таким свойствам: все они непусты и если и — два разных окончания (одной и той же базы), то база должна содержать третье окончание , которое содержится в каждом из первых двух: . Нетрудно видеть, что в рассмотренных выше трёх примерах баз, действительно, все окончания— непустые множества и пересечение двух окончаний совпадает с одним из них (с меньшим) и, тем самым, можно взять равным этому меньшему окончанию. Получили, что рассмотренные наборы множеств действительно являются базами. Произвольную базу будем обозначать , а её окончания— буквой , быть может, снабжённой индексами. Если , причём , то окончание будем называть более далёким, чем окончание . Например, для базы окончание более далёкое, чем , если ; для базы окончание является тем более далёким, чем меньше число . Теперь дадим определение предела по заданной базе . Определение 2.4 Пусть — некоторая база и функция определена во всех точках некоторого окончания базы (и, значит, определена во всех точках более далёких окончаний ). Число называется пределом функции по базе (или при базе ) и обозначается если для любого (сколь угодно малого) числа найдётся такое окончание базы , что при всех выполняется неравенство Тот факт, что , записывают ещё в виде Нетрудно заметить, что в случае баз , и это общее определение предела, при соответствующей подстановке вида окончаний этих баз, означает ровно то же самое, что приведённые выше, в предыдущем разделе, частные определения пределов. Геометрический смысл данного определения предела таков: на плоскости , на которой нарисован график функции , проведём горизонтальную полосу ширины вокруг горизонтальной прямой . Тот факт, что , означает, что найдётся достаточно далёкое окончание базы , на котором график функции целиком лежит в этой полосе. При уменьшении ширины полосы окончание, возможно, придётся брать более далёким, но, всё равно, и в любую более узкую полосу умещается график на достаточно далёком окончании. Рис.2.8., имеющей предел, умещается в любую узкую полосу на достаточно далёком окончании Компьютерная математика Mathematica электронный учебник Ускорение численных расчетов и повышение их точности Большинство пользователей с трудом уловят разницу между версиями Mathematiea 3 и Mathematica 4. Именно поэтому основной материал данной книги полностью относится к этим двум последним версиям. Тем не менее, различия между версиями есть, и достаточно серьезные. Пожалуй, главной отличительной особенностью системы Mathematica 4 стало кардинальное ускорение численных расчетов. Традиционно системы символьной математики проигрывали численным системам, таким как MATLAB. До сих пор скорость вычислений в системе MATLAB в 5-10 раз превышала скорость вычислений, производимых системами символьной математики. Поэтому в системе Mathematica 4 были предприняты необычные для систем символьной математики и даже беспрецедентные меры по ускорению численных расчетов. Они перечислены ниже: Значительно ускорены все операции с матрицами, особенно большого размера. Примеры решения задач Площадь поверхности тела вращения . Существенно оптимизированы алгоритмы для выполнения вычислений с числами, содержащими вплоть до миллиона знаков. Ускорен ввод и вывод очень больших целых чисел. Полностью сохраняется точность при вводе и выводе приближенных действительных чисел. Обеспечивается свертка и корреляция массивов любой размерности. Применены новые оптимизированные алгоритмы для преобразований Фурье. Ускорены процедуры численного решения полиномиальных уравнений. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *