На главную Конспекты по математике Уравнение плоскости Аналитическая геометрия Теорема 11.2 Всякое уравнение(11.3), в котором , является уравнением плоскости, ортогональной вектору . Доказательство. Условие означает, что хотя бы одно из чисел , отлично от нуля. Пусть это будет, например, число . Преобразуем уравнение(11.3) следующим образом: По теореме 11.1 такое уравнение является уравнением плоскости с нормальным вектором n, проходящей через точку . Теорема 11.1 позволяет написать уравнение плоскости, если известна точка этой плоскости и вектор, ортогональный плоскости. Однако, довольно часто встречаются задачи, где требуется получить уравнение плоскости, если известна точка, лежащая на ней, и два неколлинеарных вектора, лежащих или, что то же самое, параллельных плоскости. Покажем на примере, как решается такая задача. Пример 11.1 Требуется написать уравнение плоскости, проходящей через точку и параллельной векторам и . Решение. Векторное произведение по определению 10.26 ортогонально векторам p и q. Следовательно, оно ортогонально искомой плоскости и вектор можно взять в качестве ее нормального вектора. Найдем координаты вектора n: то есть . Используя формулу(11.1), получим Раскрыв в этом уравнении скобки, приходим к окончательному ответу. Ответ: . Компьютерная математика Mathematica электронный учебник Ускорение численных расчетов и повышение их точности Большинство пользователей с трудом уловят разницу между версиями Mathematiea 3 и Mathematica 4. Именно поэтому основной материал данной книги полностью относится к этим двум последним версиям. Тем не менее, различия между версиями есть, и достаточно серьезные. Пожалуй, главной отличительной особенностью системы Mathematica 4 стало кардинальное ускорение численных расчетов. Традиционно системы символьной математики проигрывали численным системам, таким как MATLAB. До сих пор скорость вычислений в системе MATLAB в 5-10 раз превышала скорость вычислений, производимых системами символьной математики. Поэтому в системе Mathematica 4 были предприняты необычные для систем символьной математики и даже беспрецедентные меры по ускорению численных расчетов. Они перечислены ниже: Значительно ускорены все операции с матрицами, особенно большого размера. Примеры решения задач Площадь поверхности тела вращения . Уравнение поверхности в пространстве Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности. Существенно оптимизированы алгоритмы для выполнения вычислений с числами, содержащими вплоть до миллиона знаков. Найти площадь этого треугольника. Решение: Есть несколько способов найти площадь треугольника, мы воспользуемся способом, связанным с векторами, а именно – геометрическим смыслом векторного произведения. Ускорен ввод и вывод очень больших целых чисел. Полностью сохраняется точность при вводе и выводе приближенных действительных чисел. Обеспечивается свертка и корреляция массивов любой размерности. Применены новые оптимизированные алгоритмы для преобразований Фурье. Ускорены процедуры численного решения полиномиальных уравнений. ;