Функции и их графики Вычисление производной Возрастание и убывание функции Курсовая по Кузнецову Вычисление объемов и площадей Мгновенная скорость при прямолинейном движении Пусть материальная точка движется по координатной прямой , и её положение в момент времени имеет координату . Средняя скорость точки за произвольный промежуток времени , за который точка перемещается из положения в положение , определяется как . Если мы обозначим протекший промежуток времени через , то и , поэтому , при . Мгновенная скорость точки в момент определяется как предел средней скорости за промежуток времени от до (), при условии . Таким образом, получаем формулу, служащую определением мгновенной скорости в момент : (4.1)Можно также рассматривать промежутки времени, протекшие до момента , то есть промежутки от до . Тогда средняя скорость точки за этот промежуток времени будет равна , при . Если положить , то, очевидно, , при . При этом придётся определять мгновенную скорость в момент формулой (4.2) Определение 4.1 Число мы будем называть правой производной, или производной справа, функции в точке и обозначать или , а число — левой производной, или производной слева, функции в точке и обозначать или . Иногда для уточнения говорят, что эти производные вычислены по переменной . Напомним ещё раз, что механический смысл как левой, так и правой производной координаты по времени — это мгновенная скорость движения, вычисленная в момент , но либо по интервалам времени, предшествующим , либо по интервалам, последующим . Эти две мгновенных скорости не обязаны, вообще говоря, совпадать: если тело покоилось до момента , а затем двинулось с постоянной скоростью , то мгновенная скорость, вычисленная по предшествующим интервалам, очевидно, равна (так как до момента тело покоилось), а мгновенная скорость, вычисленная по последующим интервалам времени, равна (— это изменение координаты точки, движущейся со скоростью , за промежуток времени продолжительности с момента до момента ). Эти две мгновенных скорости различны Решение задач по математике