Форма-трафарет Садовая дорожка Заработок для студента Заказать диплом Cкачать контрольную Курсовые работы Репетиторы онлайн по любым предметам Выполнение дипломных, курсовых, контрольных работ Магазин студенческих работ Диссертации на заказ Заказать курсовую работу или скачать? Эссе на заказ Банк рефератов и курсовых Физические основы термодинамики Атомная физика Закон радиоактивного распада Идеальный 3х атомный газ Уравнение динамики поступательного движения тела Лекции и задачи по физике Элементы зонной теории кристаллов В прошлом семестре рассматривались энергетические уровни электрона в атоме водорода [см. конспект лекций, ч. III, формула (11. 14)]. Там было показано, что значения энергии, которые может иметь электрон в атоме водорода , где n=1, 2, 3 … главное квантовое число, т.е. энергия электрона в атоме квантована, она может принимать только дискретные значения. В общем случае энергетические уровни какого-либо валентного электрона в одном изолированном атоме могут быть представлены в виде , изображенном на рис. 1.По вертикали отложены значения энергии, по горизонтали ничего не отложено. Наинизший уровень или уровень с наименьшей энергией Е1 называется основным или невозбужденным. Рассмотрим теперь N тождественных атомов, удалённых друг от друга настолько далеко, что их взаимодействиями можно пренебречь. Все они в этом случае будут иметь одинаковые энергетические уровни (см. рис.1). Будем сближать атомы друг с другом, чтобы они образовали кристаллическую решётку. Тогда из-за взаимодействия между атомами каждый энергетический уровень изолированного атома Е1, Е2,… расщепится на N простых уровней (см. рис. 2).Эта совокупность энергетических уровней, на которые расщепляется уровень изолированного атома, называется энергетической зоной или просто зоной кристалла. Ввиду того что N очень велико, расстояния между уровнями одной и той же зоны крайне малы и можно считать, что в пределах зоны dЕ энергия изменяется непрерывно. Однако соседние энергетические зоны, вообще говоря, разделены конечными интервалами энергии DE. Эти интервалы называются запрещенными зона (см. рис. 3a), т.к. энергия электрона не может принимать значения энергии, лежащие в пределах таких интервалов. В противоположность запрещенным зонам зоны с дозволенными значениями энергии называют разрешенными. Самыми широкими разрешенными зонами оказываются зоны, соответствующие уровням валентных электронов. Заметим, что энергетические зоны, разумеется нельзя путать с пространственными зонами, т.е. областями пространства, в которых может находиться электрон. Высшая, целиком заполненная зона, называется валентной, следующая разрешенная — зоной проводимости. Деление кристаллов на диэлектрики, металлы и полупроводники Все кристаллы разделяются на диэлектрики, металлы и полупроводники. Рассмотрим их энергетические зоны.Чтобы исключить тепловое движение будем сначала предполагать, что температура кристалла равна 0 К. По принципу Паули на каждом уровне может находиться не более двух электронов с противоположно направленными спинами. В равновесном состоянии будут заполнены электронами самые низкие энергетические уровни. А все вышележащие уровни окажутся свободными. В диэлектриках валентная зона целиком заполнена. А лежащая выше зона проводимости, отделенная от нее запрещенной зоной (ширина которой DЕ=2.5 — 3 эВ), совсем не содержит электронов, т.е. полностью свободна (см. рис. 3а). Электрический ток есть движение электронов, при котором они непрерывно переходят из одного состояния в другое. Следовательно, электроны пока они находятся в целиком заполненной валентной зоне, не могут участвовать в создании тока. Потому диэлектрики не проводят электрический ток.В металлах валентная зона заполнена электронами частично (см. рис. 3б). Не имеет значения, существует ли запрещенная зона между валентной зоной и зоной проводимости. Они могут вплотную примыкать и даже перекрываться между собой. Существенно только, чтобы в зоне, содержащей электроны, были состояния, не занятые электронами. При наложении электрического поля с напряжённостью у электронов имеется возможность переходить в такие незанятые состояния и через кристалл потечёт электрический ток в направлении . В полупроводниках (бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, йод и др. К наиболее часто используемым относятся Ge и Si — элементы 4-й группы периодической системы элементов), как и в диэлектриках валентная зона полностью заполнена электронами, а зона проводимости полностью свободна. Однако в полупроводниках ширина запрещённой зоны DЕ значительно меньше, чем в диэлектриках (рис. 3в). Например, DЕ = 1,1 эВ для Si и 0,65 эВ для Ge. Поэтому при Т>0 K электрон в валентной зоне может получить от иона кристаллической решётки энергию порядка kT и перейти в зону проводимости. Такой переход может быть осуществлён и другим способом, например, освещением кристалла. В результате этого кристалл приобретает способность проводить электрический ток. В полупроводниках проводимость создаётся электронами, перешедшими в зону проводимости. Электрон, ушедший из валентной зоны, оставляет в ней незаполненное состояние, называемое дыркой. Другой электрон в валентной зоне получает возможность перейти в это незаполненное состояние. При этом в валентной зоне создаётся новая дырка, в которую может перейти третий электрон и т. д. Вместе с движением электрона происходит движение и соответствующей дырки, но в обратном направлении. Явление происходит так, как если бы ток вызывался не движением отрицательно заряженных электронов, а противоположно направленным движением положительно заряженных дырок. Эти электроны и дырки являются носителями тока в полупроводнике. Подчеркнём, что движение дырки не есть перемещение какой-то реальной положительно заряженной частицы. Представление о дырках отображает характер движения всей многоэлектронной системы в полупроводнике. Собственная проводимость полупроводников Электропроводность химически чистого полупроводника (например, чистого Ge или чистого Si) называется его собственной проводимостью. Расчет показывает, что у собственного полупроводника m=EF=DЕ/2 (см. рис. 3в). Распределение электронов по уровням валентной зоны и зоны проводимости описывается функцией Ферми-Дирака [cм. формулу (7.1)]. Т.к. средние числа заполнения электронами уровней зоны проводимости малы, то можно пренебречь единицей в (7.1). Учитывая все это, получаем