Корпускулярные свойства света Пересечение плоскости с многогранником Исследование функции Пределы Производная График функции Векторная алгебра Линейные уравнения Матрицы Математический анализ Задачи на интеграл Интегральное исчисление Кратные интегралы Курсовые расчеты Инсталляции системы Запуск ОС Поддержка Plug and Play Интерфейс Панель управления Консоль управления Файловые системы FAT и FAT32 Информационные источники Сервер Web Работа в сетях Windows и Novell Интернет и почта Периферия и мультимедиа Работа с файлами Дополнительная конфигурация Конфигурирование X Windows Дистрибутив Служба удаленного доступа На главную на основе микроядра Конспект лекций по математике Непрерывность функции на интервале и на отрезке Пример 3.14 Рассмотрим функцию на отрезке . Поскольку и — числа разных знаков, то функция обращается в 0 в некоторой точке интервала . Это означает, что уравнение имеет корень . Рис.3.17.Графическое представление корня уравнения Доказанная теорема фактически даёт нам способ нахождения корня , хотя бы приближённого, с любой заданной наперёд степенью точности. Это — метод деления отрезка пополам, описанный при доказательстве теоремы. Более подробно с этим и другими, более эффективными, способами приближённого нахождения корня мы познакомимся ниже, после того, как изучим понятие и свойства производной. Заметим, что теорема не утверждает, что если её условия выполнены, то корень — единственный. Как показывает следующий рисунок, корней может быть и больше одного (на рисунке их 3). Рис.3.18.Несколько корней функции, принимающей значения разных знаков в концах отрезка Однако, если функция монотонно возрастает или монотонно убывает на отрезке, в концах которого принимает значения разных знаков, то корень — единственный, так как строго монотонная функция каждое своё значение принимает ровно в одной точке, в том числе и значение 0. Рис.3.19.Монотонная функция не может иметь более одного корня Непосредственным следствием теоремы о корне непрерывной функции является следующая теорема, которая и сама по себе имеет очень важное значение в математическом анализе. Теорема 3.7 (о промежуточном значении непрерывной функции) Пусть функция непрерывна на отрезке и (будем для определённости считать, что ). Пусть — некоторое число, лежащее между и . Тогда существует такая точка , что . Рис.3.20.Непрерывная функция принимает любое промежуточное значение Доказательство. Рассмотрим вспомогательную функцию , где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что . Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда (см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале . Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества (то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех . Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ). Рис.3.21.Нижняя и верхняя грани ограниченного множества Если , то существует невозрастающая последовательность точек , которая стремится к . Точно так же если , то существует неубывающая последовательность точек , которая стремится к . Если точка принадлежит множеству , то является наименьшим элементом этого множества: ; аналогично, если , то . Кроме того, для дальнейшего нам понадобится следующая Лемма 3.1 Пусть — непрерывная функция на отрезке , и множество тех точек , в которых (или , или ) не пусто. Тогда в множестве имеется наименьшее значение , такое что при всех . Рис.3.22.Наименьший аргумент, при котором функция принимает заданное значение Доказательство. Поскольку — ограниченное множество (это часть отрезка ), то оно имеет точную нижнюю грань . Тогда существует невозрастающая последовательность , , такая что при . При этом , по определению множества . Поэтому, переходя к пределу, получаем, с одной стороны, а с другой стороны, вследствие непрерывности функции , Значит, , так что точка принадлежит множеству и . В случае, когда множество задано неравенством , мы имеем при всех и по теореме о переходе к пределу в неравенстве получаем откуда , что означает, что и . Точно так же в случае неравенства переход к пределу в неравенстве даёт откуда , и . Компьютерная математика Mathematica электронный учебник Зарождение и развитие систем компьютерной алгебры Эру создания компьютерной символьной математики принято отсчитывать с начала 60-х годов. Именно тогда в вычислительной технике возникла новая ветвь компьютерной математики, не совсем точно, но зато броско названная компьютерной алгеброй. Речь шла о возможности создания компьютерных систем, способных осуществлять типовые алгебраические преобразования: подстановки в выражениях, упрощение выражений, операции со степенными многочленами (полиномами), решение линейных и нелинейных уравнений и их систем, вычисление их корней и т. д. При этом предполагалась возможность получения аналитических (символьных) результатов везде, где это только возможно. Примеры решения задач Свойства Определенный интеграл Интегральное исчисление. К сожалению, книги по этому направлению были способны лишь отпугнуть обычного читателя и пользователя компьютера от изучения возможностей компьютерной алгебры в силу перенасыщенности их узкоспециальным теоретическим материалом и весьма специфического языка описания. Материал таких книг, возможно, интересен математикам, занимающимся разработкой систем компьютерной алгебры, но отнюдь не основной массе их пользователей. Закон Вина ; Парабола – кривая второго порядка, прямая пересекает ее в двух точках драйверы режима ядра программное обеспечение необходимо для разработки и отладки драйверов Первый способ задания функции: табличный Степенная функция Обратные тригонометрические функции Определение непрерывности функции Оценки ошибок в формулах приближённого дифференцирования Производные функции, заданной параметрически Примеры исследования функций и построения графиков Приближённое нахождение корней уравнений и точек экстремума Тригонометрическая форма комплексного числа Изменить порядок интегрирования Вычислить двойной интеграл Вычисление тройных интегралов Сферические координаты Два основных метода интегрирования Замена переменных в двойном интеграле Дифференцирование интегралов, зависящих от параметра